Key Publications
For a complete list of publications click here.
Evolution of astrocytes: From invertebrates to vertebrates
Falcone C.
Frontiers in Cell and Developmental Biology, 2022 Aug – doi: 10.3389/fcell.2022.931311
The central nervous system (CNS) shows incredible diversity across evolution at the anatomical, cellular, molecular, and functional levels. Over the past decades, neuronal cell number and heterogeneity, together with differences in the number and types of neuro-active substances, axonal conduction, velocity, and modes of synaptic transmission, have been rigorously investigated in comparative neuroscience studies. However, astrocytes, a specific type of glial cell in the CNS, play pivotal roles in regulating these features and thus are crucial for the brain’s development and evolution. While special attention has been paid to mammalian astrocytes, we still do not have a clear definition of what an astrocyte is from a broader evolutionary perspective, and there are very few studies on astroglia-like structures across all vertebrates. Here, I elucidate what we know thus far about astrocytes and astrocyte-like cells across vertebrates. This information expands our understanding of how astrocytes evolved to become more complex and extremely specialized cells in mammals and how they are relevant to the structure and function of the vertebrate brain.
Redefining varicose projection astrocytes in primates
Falcone C, et al.
Glia, 2022 Jan – doi: 10.1002/glia.24093
Varicose projection astrocytes (VP-As) are found in the cerebral cortex and have been described to be specific to humans and chimpanzees. To further examine the phylogenetic distribution of this cell type, we analyzed cortical tissue from several primates ranging from primitive primates to primates evolutionary closer to human such as apes. We specifically analyzed tissue from four strepsirrhine species, one tarsier, six species of platyrrhine monkeys, ten species of cercopithecoid monkeys, two hylobatid ape species, four to six cases each of chimpanzee, bonobo, gorilla, and orangutan, and thirteen human. We found that VP-As were present only in human and other apes (hominoids) and were absent in all other species. We showed that VP-As are localized to layer VI and the superficial white matter of the cortex. The presence of VP-As co-occured with interlaminar astrocytes that also had varicosities in their processes. Due to their location, their long tangential processes, and their irregular presence within species, we propose that VP-As are astrocytes that develop varicosities under specific conditions and that are not a distinct astrocyte type.
Cortical interlaminar astrocytes are generated prenatally, mature postnatally, and express unique markers in human and nonhuman primates
Falcone C., et al.
Cerebral Cortex, 2021 Jan – doi: 10.1093/cercor/bhaa231
Interlaminar astrocytes (ILAs) are a subset of cortical astrocytes that reside in layer I, express GFAP, have a soma contacting the pia, and contain long interlaminar processes that extend through several cortical layers. We studied the prenatal and postnatal development of ILAs in three species of primates (rhesus macaque, chimpanzee, and human). We found that ILAs are generated prenatally likely from radial glial (RG) cells, that ILAs proliferate locally during gestation, and that ILAs extend interlaminar processes during postnatal stages of development. We showed that the density and morphological complexity of ILAs increase with age, and that ILAs express multiple markers that are expressed by RG cells (Pax6, Sox2, and Nestin), specific to inner and outer RG cells (Cryab and Hopx), and astrocyte markers (S100β, Aqp4, and GLAST) in prenatal stages and in adult. Finally, we demonstrated that rudimentary ILAs in mouse also express the RG markers Pax6, Sox2, and Nestin, but do not express S100β, Cryab, or Hopx, and that the density and morphological complexity of ILAs differ between primate species and mouse. Together these findings contribute new information on astrogenesis of this unique class of cells and suggest a lineal relationship between RG cells and ILAs.
Cortical interlaminar astrocytes across the therian mammal radiation
Falcone C., et al.
Journal of Comparative Neurology, 2019 Jul – doi: 10.1002/cne.24605
Interlaminar astrocytes (ILA) in the cerebral cortex possess a soma in layer I and extend an interlaminar process that runs perpendicular to the pia into deeper cortical layers. We examined cerebral cortex from 46 species that encompassed most orders of therian mammalians, including 22 primate species. We described two distinct cell types with interlaminar processes that have been referred to as ILA, that we termed pial ILA and supial ILA. ILA subtypes differ in somatic morphology, position in layer I, and presence across species. We further described rudimentary ILA that have short GFAP+ processes that do not exit layer I, and “typical” ILA with longer GFAP+ processes that exit layer I. Pial ILA were present in all mammalian species analyzed, with typical ILA observed in Primates, Scandentia, Chiroptera, Carnivora, Artiodactyla, Hyracoidea, and Proboscidea. Subpial ILA were absent in Marsupialia, and typical subpial ILA were only found in Primate. We focused on the properties of pial ILA by investigating the molecular properties of pial ILA and confirming their astrocytic nature. We found that while the density of pial ILA somata only varied slightly, the complexity of ILA processes varied greatly across species. Primates, specifically bonobo, chimpanzee, orangutan, and human, exhibited pial ILA with the highest complexity. We showed that interlaminar processes contact neurons, pia, and capillaries, suggesting a potential role for ILA in the blood–brain barrier and facilitating communication among cortical neurons, astrocytes, capillaries, meninges, and cerebrospinal fluid.
Immunofluorescence protocol for localizing protein targets in brain tissue from diverse model and non-model mammals
Ciani C., Pistorio G., Mearelli M., Falcone C.
STAR Protocols – Cell Press, 2023 Aug – doi.org/10.1016/j.xpro.2023.102482
Previous immunostaining protocols are highly specific for model organisms and often not suitable for diverse specimens that are non-perfused and over-fixed (i.e., tissues sitting in fixatives for months/year). Here, we present an immunofluorescence protocol for localizing protein targets in brain tissue from 11 model and non-model mammals. We describe preparation of both fresh and fixed tissues including steps for deparaffinization, fixation, and cryoprotection. We then detail immunofluorescence procedures including antigen retrieval, reducing autofluorescence, nuclear staining, mounting, and image collection.